首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
地质学   5篇
天文学   1篇
  2017年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Northward flowing coastal currents along the western margin of India during winter–spring advect low-salinity Bay of Bengal water in to the Eastern Arabian Sea producing a distinct low-salinity tongue, the strength of which is largely governed by the freshwater flux to the bay during summer monsoons. Utilizing the sedimentary records of δ18OG. sacculifer, we reconstructed the past salinity-gradient within that low-salinity tongue, which serves as a proxy for the variation in freshwater flux to the Bay of Bengal and hence summer monsoon intensity.The north–south contrast in the sea level corrected (residual)-δ18OG. sacculifer can be interpreted as a measure of surface salinity-contrast between those two locations because the modern sea surface temperature and its past variation in the study region is nearly uniform. The core-top residual-δ18OG. sacculifer contrast of 0.45‰ between the two cores is assumed to reflect the modern surface salinity difference of 1 psu and serves as a calibration for past variations.The residual-δ18OG. sacculifer contrast varies between 0.2‰ at 75 ky B.P. (i.e., late-Marine Isotope Stage 5) and 0.7‰ at 20 ky B.P. (i.e., Last Glacial Maximum), suggesting that the overall salinity difference between the northern- and southern-end of the low-salinity tongue has varied between 0.6 and 1.6 psu. Considerably reduced difference during the former period than the modern suggests substantially intensified and northward-extended low-salinity tongue due to intense summer monsoons than today. On the other hand, larger difference (1.6 psu) during the latter period indicates that the low-salinity tongue was significantly weakened or withdrawn due to weaker summer monsoons. Thus, the salinity-gradient in the eastern Arabian Sea low-salinity tongue can be used to understand the past variations in the Indian summer monsoons.  相似文献   
2.
The deglacial transition from the last glacial maximum at \(\sim \)20 kiloyears before present (ka) to the Holocene (11.7 ka to Present) was interrupted by millennial-scale cold reversals, viz., Antarctic Cold Reversal (\(\sim \)14.5–12.8 ka) and Greenland Younger Dryas (\(\sim \)12.8–11.8 ka) which had different timings and extent of cooling in each hemisphere. The cause of this synchronously initiated, but different hemispheric cooling during these cold reversals (Antarctic Cold Reversal \(\sim \)3\(^{\circ }\hbox {C}\) and Younger Dryas \(\sim \)10\(^{\circ }\hbox {C}\)) is elusive because \(\hbox {CO}_{2}\), the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, the driver of antiphased bipolar climate response, both fail to explain this asymmetry. We use centennial-resolution records of the local surface water \(\delta ^{18}\hbox {O}\) of the Eastern Arabian Sea, which constitutes a proxy for the precipitation associated with the Indian Summer Monsoon, and other tropical precipitation records to deduce the role of tropical forcing in the polar cold reversals. We hypothesize a mechanism for tropical forcing, via the Indian Summer Monsoons, of the polar cold reversals by migration of the Inter-Tropical Convergence Zone and the associated cross-equatorial heat transport.  相似文献   
3.
The effect of seasonally reversing monsoons in the northern Indian Ocean is to impart significant changes in surface salinity(SS).Here,we report SS changes during the last 32 kyr in the Lakshadweep Sea(southeastern Arabian Sea)estimated from paired measurements of δ~(18)O and sea surface temperature(SST)using Globigerinoides sacculifer,an upper mixed layer dwelling foraminifera.The heaviest δ~(18)O_(G.sacculifer)(-0.07±0.08‰)is recorded between 23 and 15 ka,which could be defined as the last glacial maxi...  相似文献   
4.
The effect of seasonally reversing monsoons in the northern Indian Ocean is to impart significant changes in surface salinity (SS). Here, we report SS changes during the last 32 kyr in the Lakshadweep Sea (southeastern Arabian Sea) estimated from paired measurements of d18O and sea surface temperature (SST) using Globigerinoides sacculifer, an upper mixed layer dwelling foraminifera. The heaviest d18OG.sacculifer (–0.07±0.08‰) is recorded between 23 and 15 ka, which could be defined as the last glacial maximum (LGM). The d18OG.sacculifer shift between the LGM and Holocene is 2.07‰. The SST shows an overall warming of 2°C from the LGM to Holocene (28°C to 30°C). However, coldest SSTs are observed prior to LGM, i.e., ~27 ka. The SS was higher (~38 psu) throughout most of the recorded last glacial period (32.5–15 ka). This high salinity together with generally lower SSTs suggests a period of sustained weaker summer or stronger winter monsoons. The deglacial warming is associated with rapid reorganization of monsoons and is reflected in decreased salinity to a modern level of ~ 36.5 psu, within a period of ~5 kyr. This indicates intensification of summer monsoons during cold to warm climate transition.  相似文献   
5.
Co-rich Mn crusts from four different locations of the world ocean have been studied to understand the role of dissolved oxygen of the ambient seawater in the formation of Co-rich Mn crusts. WOCE (World Ocean Circulation Experiment) oxygen profiles of modern seawater in the Equatorial North Pacific Ocean, Equatorial South Indian Ocean and the North East Atlantic Ocean have been evaluated with respect to the occurrence of Co-rich Mn crusts at depths ranging from 1500 to 3200 m. The oxygen content at these depths varied from ∼90–240 µmol/kg. The oxygen minimum zone (OMZ), with oxygen contents in the range ∼45–100 µmol/kg, is located in the depth range 800–900 m in these regions. The age of the ocean crust on which seamounts formed is in the range 80.3–180 Ma. Profiles of the oxygen contents of seawater with depth in the oceans are shown to be extremely useful in establishing the optimum conditions for the formation of Co-rich Mn crusts. The use of WOCE oxygen profiles to study geochemical processes in the oceans is highly recommended.  相似文献   
6.
The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide new insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 32n.1 identified over the ANS reveal that the main plateau of the ANS was formed at 80–73 Ma, at around the same time as that of the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hotspot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80–73 Ma, close to the India–Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6–13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25–35 Myr later than the underlying oceanic crust. Therefore, we suggest that the ANS and the 85°E Ridge appear to be unrelated as they were formed by different mantle sources, and that the proximity of the southern end of the 85°E Ridge to the ANS is coincidental.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号